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Abstract While density-dependence is central to most
theory regarding population regulation and community
structure, specific mechanisms that modify its effects in
the absence of changes in consumer-resources ratios (e.g.,
thinning) are not well understood. To determine if the
threat of predation alters effects of density, we investigated
the interaction between density of larval treefrogs (Hyla
chrysoscelis) and the non-lethal presence of a predatory
fish (Enneacanthus obesus). A significant density by fish
interaction was consistent for all response variables (e.g.,
larval survivorship, mass, and time to metamorphosis)
driven by a complete lack of density effects in the presence
of predators, while predator-free tanks showed classic
density-dependent responses. Given that female H.
chrysoscelis strongly avoid ovipositing in ponds contain-
ing fish, certain larval adaptations are apparently not
constrained by maternal behavior and suggest redundancy
in response to predators. Our data suggest that non-lethal
effects of predators can determine larval performance
irrespective of larval density, and that the non-lethal
effects of predators can be strong whether lethal effects are
strong or weak.

Keywords Competition . Density-dependence . Non-
lethal effects . Predator induction . Predator-prey
interactions

Introduction

Density-dependence is central to most theories of popu-
lation regulation, species interactions, and community
structure (e.g., Pearl and Reed 1920; Pearl 1925; Volterra
1926; Lotka 1932; Gause 1934, 1935; Nicholson and
Bailey 1935; and subsequent derivations thereof, e.g., see

Cappuccino and Price 1995; Chesson 1996; Turchin 1999)
and is a readily observed phenomenon in both natural and
experimental systems involving a broad range of organ-
isms (e.g., Park 1948; de Wit 1960; Harper 1967;
Brockelman 1969; Vandermeer 1969; Le Cren 1973;
Wilbur 1987). Models of population regulation assume
density-dependence at some stage in any population
persisting over multiple generations, unless affected by
density-independent factors preventing expression of den-
sity-dependence (e.g., Nicholson 1933; Nicholson and
Bailey 1935; Haldane 1953; Royama 1977; Murdoch
1994; Chesson 1996). The longstanding debate is not
whether density-dependence is characteristic of natural
populations, but whether they are typically regulated by
density-dependence (Andrewartha and Birch 1954; Ni-
cholson 1957; Royama 1977; Turchin 1999). Whether a
given population is regulated in a density-dependent or
density-independent fashion depends on a variety of
intrinsic and extrinsic factors, as well as their interactions.
As such, ecologists have spent considerable effort
documenting the role of density-dependence and examin-
ing factors that can override its effects. Disturbance and
predation have been repeatedly demonstrated to ameliorate
the effects of density-dependent competition in both
natural and experimental systems by modifying density
itself (e.g., Paine 1966; Lubchenco 1978; Morin 1983;
Wilbur 1987). Less well understood are factors that
modify density-dependence in the absence of mortality.
This is analogous to the distinction between interaction
chain indirect effects (density-mediated indirect effects),
where interactions are affected by changes in number, and
interaction modification indirect effects (trait-mediated
indirect effects), where the nature of species interactions
changes with changes in behavior (Wootton 1993; Abrams
1995).

One of the most consistent patterns in community
ecology has been the observation of density-dependent
competition in larval amphibians (e.g., Brockelman 1969;
DeBenedictis 1974; Wilbur 1977a, 1977b; Woodward
1982; Smith 1983, 1987; Petranka 1989; Berven 1990;
Scott 1990; Altwegg 2003), which have been an important
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model system for the study of density-dependence.
Whether in mesocosms, enclosures, or whole-pond
experiments, the responses of larval amphibians to
increasing density in the absence of predation or distur-
bance are both predictable and dramatic. Resulting largely
from exploitative competition for limited resources (Dick-
man 1968; Steinwascher 1978; Seale 1980), size and time
to metamorphosis, along with survival, respond consis-
tently to changes in density (Wilbur 1987). However, both
increases in limiting resources and thinning (lethal direct
effect) via predation (or disturbance) can reduce negative
effects of density by reducing consumer-resource ratios
(e.g., Wilbur 1972; Morin 1983; Smith 1983; Relyea
2002a). Perceived predation risk itself (non-lethal direct
effect) can alter prey activity (e.g., Lawler 1989; Skelly
and Werner 1990; Anholt et al. 2000), growth rate (e.g.,
Van Buskirk and Yurewicz 1998; Relyea and Werner
1999), development rate and time to metamorphosis
(Wilbur 1987), and morphology (e.g., McCollum and
Van Buskirk 1996; Van Buskirk et al. 1997; Relyea 2001,
2002a), and may affect the outcome of interspecific
competition by differentially altering the activity levels of
competing species (e.g., Werner 1991; Werner and Anholt
1996; Relyea 2000). Thus, the induced non-lethal effects
of predators might be expected to interact with intraspe-
cific competition to affect larval survival and performance.

We have previously demonstrated that female Hyla
chrysoscelis selectively oviposit in fish-free habitats
(Resetarits and Wilbur 1989; Rieger 2002; Binckley and
Resetarits 2003; W.J. Resetarits, unpublished work).
Because females strongly prefer fishless habitats, fish
may not generate strong responses in larval H. chrysosce-
lis since selection has limited opportunity to mold larval
responses to fish. We conducted an experiment in which
different densities of larval H. chrysoscelis were intro-
duced into habitats with and without caged predators, and
examined the effects of perceived predation risk on
standard larval life-history parameters (Morin 1983;
Wilbur 1987). Both within and among species, activity
level and larval growth rates are positively correlated
(Morin 1983; Woodward 1983; Lawler 1989; Relyea and
Werner 1999), and thus we could focus on measures of
larval performance that reflect changes in activity. Our
goal was to examine the response of larval H. chrysoscelis
to the non-lethal presence of a predatory fish, Ennea-
canthus obesus, and to examine how the non-lethal effects
of fish interact with intraspecific density-dependence,
specifically asking “What is the relative importance of
competitor density versus predator induction in determi-
nation of per capita rates?”

Materials and methods

H. chrysoscelis is the southern, diploid member of the H. versicolor
complex and breeds in a variety of ponds and ephemeral pools after
heavy rains during late spring and summer. Larval development is
rapid and metamorphosis can occur in as little as 4–5 weeks under
favorable conditions. Larval H. chrysoscelis have not been reported
to overwinter and so must reach metamorphic size before either the

pond dries or temperatures fall to the point where metamorphosis is
precluded. It is a common species in the Coastal Plain of Virginia
and one of the most abundant anurans at Naval Security Group
Activity Northwest (NSGANW), our field site on the eastern edge of
the Great Dismal Swamp in southeastern Virginia.
We evaluated the influence of density and the non-lethal presence

of fish predators on size at, time to, and survival to metamorphosis
in the gray tree frog (H. chrysoscelis). We established 16
experimental cattle watering tanks (0.61 m deep×1.65 m diameter)
in an open field at NSGANW (Morin 1983). Tanks were ≈1 m from
one another and formed four spatial blocks each containing four
tanks. On 18 July 2000, all tanks were filled to a depth of 50 cm
(≈1,000 l total volume) with water pumped from a nearby borrow
pit. A screen filter (mesh diameter: 2 mm) was placed over the pump
intake to prevent transport of larval anurans or insects into the tanks.
Zooplankton and phytoplankton were capable of passing through the
filter and served as prey for the caged fish predators and food for the
larval anurans. We added 2 kg forest-raked pine straw to each pool
to add nutrients and additional structural complexity. Tanks were
covered with fiberglass mesh lids (mesh size 2 mm) to prevent
colonization by aquatic insects (Morin 1983), and allowed to age for
1 week. Fish cages constructed from 115-l plastic trashcans with two
25×50 cm side sections replaced with fiberglass screening were
placed in each of the 16 tanks (Resetarits 2001).

Experimental design

We manipulated the presence of predators (0 or 7 fish) and tadpoles
(density of 100 or 200 hatchings) using a full factorial, randomized
complete block design. All treatments were randomly assigned to
tanks in each block.
We collected small E. obesus from ponds at NSGA, and on 20

July sets of seven fish (10–20 g total mass) were randomly selected
and assigned to appropriate tanks within each block. This density
fell within the natural range encountered at our field site (personal
observation) and mirrored the density used in a previous study of
oviposition-site choice in a related species, H. squirella (Binckley
and Resetarits 2002). Densities of H. chrysoscelis were low but
within the range of natural densities (personal observation). Use of
enclosures eliminated all physical interactions between predators
and tadpoles but allowed for non-lethal communication (chemosen-
sory, auditory, and/or mechanical); this level of stimulus had been
previously shown to elicit a response in both adult H. squirella and
H. chrysoscelis (Binckley and Resetarits 2002, 2003). Fish were
held in open tanks with zooplankton and larval insects as food
sources, prior to random assignment to experimental units.
Zooplankton, phytoplankton, and periphyton were abundant both
inside and outside the enclosures within the experimental tanks.
Adult female H. chrysoscelis respond to the presence of fish without
the need for consumption of conspecifics (Resetarits and Wilbur
1989; Rieger 2002; unpublished data); therefore, we did not feed
larval H. chrysoscelis to caged fish before or during the experiment,
which is required for inducing morphological responses to other
caged predators (McCollum and Van Buskirk 1996). Since the adult
response to fish appears to be general (Binckley and Resetarits
2003) and induced at very low densities (Rieger 2002), tadpoles
may encounter fish that are not a serious predation threat or occur at
very low densities, but which may nonetheless induce larval
responses. Thus, directly induced responses are more general than
responses requiring consumption of conspecifics. Three fish from
different pools died during the experiment; these fish were removed
but not replaced because use of multiple individuals per pool
provided sufficient strength and redundancy in stimulus levels.
On 24 July, we randomly allocated H. chrysoscelis hatchlings to

all tanks within a block. Tadpoles were taken from 10 separate
clutches of eggs obtained from captured amplectant pairs on the
same night, and were randomized in subsets of 10 from each clutch
into 24 sets of 100 tadpoles each. This ensured that genetic diversity
did not differ between tanks and any minor variation among clutches
were equalized among tanks. Sets were then randomly assigned to
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the appropriate tanks. Tanks were searched every other day for
metamorphs, which were returned to the laboratory and weighed to
the nearest 0.001 g upon tail resorption. This protocol was carried
out until 30 October, when the experiment was terminated after
2 weeks of no additional metamorphs. H. chrysoscelis cannot
successfully overwinter, so those tadpoles that did not metamor-
phose by 30 October failed to survive and were not quantified. We
left the tanks in place with the remaining tadpoles to confirm the
inability of H. chrysoscelis to overwinter; no additional metamorphs
emerged, and no tadpole survived the mild winter at our field site.

Data analysis

The experiment crossed two densities of larval H. chrysoscelis with
the presence/absence of E. obesus. We analyzed the effects of block,
density, presence/absence of fish, and the interaction between
density and fish presence on the response variables of survival, mass
at metamorphosis, and time to metamorphosis. Blocking did not
increase the efficiency of the design, so the block term was rolled
into the error term for all analyses. We used univariate analysis of
variance (ANOVA) on arcsine square-root transformed values of
survival (proportion surviving to metamorphosis), and multivariate
analysis of variance (MANOVA), along with separate univariate
ANOVAs, on log transformed values of mass at metamorphosis and
time to metamorphosis. Since insufficient data exist in most studies
to effectively test assumptions regarding normality and hetero-
scedascity of residuals, we rely on common transformations to
improve the behavior of the data, the Central Limit Theorem, and
the robustness of ANOVA to any remaining deviations from the
assumptions (Steele and Torrie 1980; Morin 1983; Johnson 1995).
Survival could not be included in a MANOVA because zero values
produce undefined values of mass and time to metamorphosis. Only
cells with four or more metamorphs were included in the
MANOVA, eliminating three tanks with values of 0 (Low-Fish),1,
and 2 (both Hi-Nofish) metamorphs, respectively. Survival values
were relatively low because they exclude individuals that did not
reach metamorphosis before further growth and development were
truncated by the onset of cooler weather, which is precisely what
occurs in natural ponds with drying and/or cold. Data were analyzed
using PROC GLM within SAS for Windows version 8.0 (SAS
Institute 1998) using type III sums of squares and α=0.05. PROC
GLM is specifically designed to deal with unbalanced data in both
ANOVA and MANOVA.

Results

For survival to metamorphosis, the significant density-by-
fish interaction dominated (Table 1, Fig. 1a) due to a lack
of density effect with fish and a strong density effect
without fish. Density was significant in the ANOVA of
survival, while the main effect of fish was not; however,
main effects may be meaningless in the presence of strong
interactions (Nelder 1977; Sahai and Ageel 2000). In our

case interpretation is rather simple; more metamorphs are
produced at low density only in the absence of fish.

The MANOVA revealed a marginal effect of density, no
effect of fish, but once again a highly significant density
by fish interaction (Table 2, Fig. 1b,c). No effects were
close to significant in the individual univariate ANOVAs
(Table 2). The density by fish interaction again derives
from lack of a density response for mass at metamorphosis
with fish and a counterintuitive decrease in time to
metamorphosis at high density with fish (Fig. 1b,c).
Responses in the absence of fish are precisely as expected;
high density results in smaller mass at metamorphosis and
a longer time to metamorphosis (Fig. 1b,c).

The significant density by fish interaction forms a
highly consistent pattern in the data (Tables 1, 2; Fig. 1).
At high density, treatments with fish produced more
metamorphs that were larger and emerged sooner, while at
low density, fishless tanks produced more and larger
metamorphs that emerged sooner. The presence of fish
completely obviates the typical density-dependent pattern
seen in fishless tanks and in most previous studies of larval
anurans.

Table 1 Analysis of variance for survival. Data were arcsine
square-root transformed

Source df SS MS F Pr>F

Density 1 0.363 0.363 8.84 0.0116
Fish 1 0.086 0.086 2.09 0.1740
Density*Fish 1 0.233 0.233 5.68 0.0346
Error 12 0.493 0.041

Fig. 1a–c Interaction diagrams
illustrating the effects of Low
versus High density and Fish
versus No Fish treatments for a
survival, b mass at metamor-
phosis, and c time to metamor-
phosis
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Discussion

Density-dependent competition is critical to any discus-
sion of population regulation (Murdoch 1994; Chesson
1996; Turchin 1999) and particularly germane to any
discussion of anuran larval ecology (reviews: Wilbur
1997; Alford 1999), as density affects survival, growth,
development rate, and timing and size at metamorphosis
(e.g., Wilbur and Collins 1973; Werner 1986; Smith 1987;
Berven 1990; Altwegg 2003). Density interacts with
predation and disturbance to produce complex landscapes
of variation in performance and reproductive success
(Morin 1983; Smith 1983, 1987; Werner 1986; Wilbur
1987; Resetarits and Fauth 1998). While density-mediated
(lethal) effects have received considerable attention,
mechanisms affecting density-dependent competition in
the absence of changes in consumer-resource ratios (trait-
mediated effects) are only beginning to be explored.
Predation and disturbance are known to alter aspects of
anuran larval life-history independent of changes in
density (e.g., by accelerating development in the presence
of predators or threat of desiccation; Wilbur 1987);
however, dominant impacts are viewed as deriving from
reduced density and competitive release (Morin 1983;
Wilbur 1987; Fauth and Resetarits 1991). Growing
evidence suggests non-lethal effects of predators can
have important effects on larval behavior, performance,
and morphology (e.g., Werner 1991; McCollum and Van
Buskirk 1996; Van Buskirk and Yurewicz 1998; Anholt et
al. 2000; Peacor and Werner 2001; Peacor 2002; Relyea
2002a; Bolker et al. 2003; Werner and Peacor 2003), and
thus may impact density-dependence sans mortality.
Under what conditions might density-dependence be
obviated in favor of other processes that ultimately
determine larval performance?

Predatory fish play an especially important role in the
distributional dynamics of aquatic organisms (e.g., Werner
and McPeek 1994; Hecnar and M’Closkey 1996; Wellborn
et al. 1996; Babbitt and Tanner 2000; Snodgrass et al.
2000; Eason and Fauth 2001); for many temporary pond
amphibians (including H. chrysoscelis), fish often indicate
complete (or nearly complete) reproductive failure. Fish
also generate strong behavioral responses in both adult
(Resetarits and Wilbur 1989; Rieger 2002; Binckley and
Resetarits 2003) and larval (Petranka et al. 1987; Kats et
al. 1988) H. chrysoscelis. While ovipositing H. chrysos-
celis strongly avoid predatory fish, avoidance is seldom
complete (e.g., Resetarits and Wilbur 1989; Rieger 2002;
Binckley and Resetarits 2003), so a percentage of larvae
ultimately find themselves faced with these predators. Do
larval H. chrysoscelis possess induced behaviors that
facilitate survival when maternal habitat selection fails? Or
do they rely on maternal choice to place them in the
appropriate habitat (Woodward 1983; Resetarits and
Wilbur 1989; Resetarits 1996)? Habitat selection can
limit opportunities for adaptive evolution by limiting
exposure to specific aspects of the selective landscape
(Holt 1985; Rosenzweig 1987), or providing plasticity that
obviates selection for specific characters (Brandon 1988;
Huey et al. 2003). We might expect larvae to lack
specialized morphological/physiological adaptations to
fish (typically unpalatability) since maternal behavior
limits exposure and, in fact, we do not see such
specializations in H. chrysoscelis (or its cryptic sister
species H. versicolor). However, they do respond to
predators such as larval dragonflies and salamanders with
induced morphological changes and/or reduced activity
that presumably reduces susceptibility to predation (e.g.,
Skelly 1992; McCollum and Van Buskirk 1996; Van
Buskirk and McCollum 2000a, 2000b).

Larval H. chrysoscelis do respond to fish, and three
important measures of performance (survival, mass, and
time to metamorphosis) were strongly affected by threat of
predation. The effectiveness for reducing actual predation
rates remains debatable however, but it is interesting both
that this response exists and that it involves fish cues
themselves, rather than more general cues related to
conspecific mortality (“the scent of death” sensu McCol-
lum and Van Buskirk 1996; Kats and Dill 1998). H.
chrysoscelis thus possesses a degree of redundancy in its
specific response to fish, with one layer involving
maternal oviposition behavior, and the second involving
larval behavior.

The most striking aspect of the observed responses is
the complete insensitivity to density exhibited by larval H.
chrysoscelis in the presence of fish, attesting to the strong
impact of perceived predation risk. In a short-term
experiment, Van Buskirk and Yurewicz (1998) found
that both competition and predation risk (caged dragon-
flies) determined growth rates for Rana sylvatica; preda-
tion risk predominated early in larval development, and
competition dominated later. In our case, since perfor-
mance in both high- and low-density tanks with fish did
not differ and was reduced relative to low-density fishless

Table 2 Multivariate analysis of variance of size at metamorphosis
and time to metamorphosis, and component univariate ANOVAs.
Both response variables were log transformed

Source Wilks’ λ F Num df/Den df Pr>F

Density 0.5058 3.91 2, 8 0.0654
Fish 0.7546 1.30 2, 8 0.3242
Density*Fish 0.2701 10.81 2, 8 0.0053

Source df SS MS F Pr>F

Density 1 0.0033 0.0033 1.82 0.2103
Fish 1 0.0014 0.0014 0.76 0.4061
Density*Fish 1 0.0031 0.0031 1.72 0.2222
Error 9 0.016 0.0018

Source df SS MS F Pr>F

Density 1 0.00049 0.00049 0.11 0.7428
Fish 1 0.00003 0.00003 0.01 0.9310
Density*Fish 1 0.00984 0.00984 2.37 0.1581
Error 9 0.03736 0.00415
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pools, performance was determined solely by responses to
fish when viewed over the entire larval period. Rather than
the expected additive response, density effects were
instead completely obviated with fish. Predators impact
larval anurans via both mortality and non-lethal effects
(Peacor and Werner 2001). For survivors, these effects are
typically in opposite directions. Mortality relaxes pres-
sures on resources and generates competitive release,
while threat of predation reduces foraging rate, can cause
habitat shifts, and may generate morphological changes,
all of which have significant costs. In Fauth’s (1990) study
of predation by newts and crayfish on larval H.
chrysoscelis, negative effects of the cost of predator
avoidance were offset by positive effects of thinning.
Skelly (1992) suggested predators should have a net
negative effect on survivors where competitive release
cannot compensate for costs of predator avoidance, as
when predators are relatively ineffective or performance
(e.g., growth) is not density-dependent. Our data suggest
that even if E. obesus were allowed to reduce larval
densities of H. chrysoscelis, as simulated by our LOW
density treatment, the strong negative effects generated by
predator avoidance would still obviate any competitive
release.

Because we manipulated density directly, it serves as a
metric of cost of predator avoidance, in this case roughly
equivalent to a doubling of density (from 100 to 200), or
conversely, no competitive release at a simulated 50%
predation rate. This contrasts starkly with expectations. At
high densities, the potential does exist for competitive
release, not via reduction in numbers, but via reduced
activity. While we did not quantify activity levels or
resources, fish tanks were easily recognized by lack of
larval activity and abundance of accumulated periphyton.
Reduced activity results in reduced grazing pressure on
phytoplankton and periphyton resources, increasing the
quantity (and perhaps quality) of resources available. By
reducing per-capita foraging rates, surviving individuals at
high densities achieve higher per-capita growth rates and
metamorphose sooner with than without fish. This fits
certain theoretical predictions (e.g., Abrams 1987, 1992)
and parallels results obtained by Peacor (2002) for
bullfrogs faced with predation threat from dragonflies,
though our observed positive effect is small relative to
negative impacts derived from lack of competitive release
at low densities.

Non-lethal effects of a predator in our study obviate
competitive release and solely determine performance
irrespective of larval densities. This supports the idea that
non-lethal effects of predators can be strong whether lethal
effects are strong or weak (Peacor and Werner 2001). The
subversion of density effects is an unexpected result,
especially in an organism so carefully tuned to variation in
density. Understanding the multiple roles of predators in
natural systems and identifying their effects on a variety of
prey is a critical task in understanding the dynamics of
natural communities (Chalcraft and Resetarits 2003a,
2003b). Increasingly, the non-lethal impacts of predators
on the distribution and abundance of prey species rather

than simply on behavior, performance, and morphology
have moved to the fore in our attempts to understand
assembly of natural communities (e.g., Resetarits and
Wilbur 1989; Blaustein 1999; Peacor and Werner 2001;
Resetarits 2001; Binckley and Resetarits 2002, 2003;
Murphy 2003). The strength of non-lethal effects we
observed and their interaction with density further support
the idea that predators impact individuals and species well
beyond those fated for conversion to predator biomass
(Resetarits and Wilbur 1989; Lima and Dill 1990; Lima
1998; Blaustein 1999; Peacor and Werner 2001; Relyea
2002b; Werner and Peacor 2003). In a specific sense, the
strength of non-lethal effects observed here may both
reflect and help explain the dramatic effects of fish (as
contrasted with other groups of predators) on amphibian
distribution and abundance.
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